From a Zoo to a Zoology: Descriptive Complexity for Graph Polynomials
نویسنده
چکیده
We outline a general theory of graph polynomials which covers all the examples we found in the vast literature, in particular, the chromatic polynomial, various generalizations of the Tutte polynomial, matching polynomials, interlace polynomials, and the cover polynomial of digraphs. We introduce the class of (hyper)graph polynomials definable in second order logic, and outline a research program for their classification in terms of definability and complexity considerations, and various notions of reducibilities.
منابع مشابه
Trajectory Planning Using High Order Polynomials under Acceleration Constraint
The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...
متن کاملChromatic polynomials of some nanostars
Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most colours, which is for a fixed graph G , a polynomial in , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملThe Polynomials of a Graph
In this paper, we are presented a formula for the polynomial of a graph. Our main result is the following formula: [Sum (d{_u}(k))]=[Sum (a{_kj}{S{_G}^j}(1))], where, u is an element of V(G) and 1<=j<=k.
متن کاملOn Counting Polynomials of Some Nanostructures
The Omega polynomial(x) was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.
متن کامل